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Abstract

Phylogenetic methods can use the sampling times of molecular sequence data to calibrate the molecular clock, enabling
the estimation of evolutionary rates and timescales for rapidly evolving pathogens and data sets containing ancient DNA
samples. A key aspect of such calibrations is whether a sufficient amount of molecular evolution has occurred over the
sampling time window, that is, whether the data can be treated as having come from a measurably evolving population.
Here, we investigate the performance of a fully Bayesian evaluation of temporal signal (BETS) in sequence data. The
method involves comparing the fit to the data of two models: a model in which the data are accompanied by the actual
(heterochronous) sampling times, and a model in which the samples are constrained to be contemporaneous (isochro-
nous). We conducted simulations under a wide range of conditions to demonstrate that BETS accurately classifies data
sets according to whether they contain temporal signal or not, even when there is substantial among-lineage rate
variation. We explore the behavior of this classification in analyses of five empirical data sets: modern samples of
A/H1N1 influenza virus, the bacterium Bordetella pertussis, coronaviruses from mammalian hosts, ancient DNA from
Hepatitis B virus, and mitochondrial genomes of dog species. Our results indicate that BETS is an effective alternative
to other tests of temporal signal. In particular, this method has the key advantage of allowing a coherent assessment of
the entire model, including the molecular clock and tree prior which are essential aspects of Bayesian phylodynamic
analyses.

Key words: Bayesian phylogenetics, ancient DNA, measurably evolving population, marginal likelihood, molecular
clock, temporal signal.

Introduction each of the tips as a function of sequence sampling times.

The molecular clock has become a ubiquitous tool for study-
ing evolutionary processes in rapidly evolving organisms and
in data sets that include ancient DNA. In its simplest form, the
molecular clock posits that evolutionary change occurs at a
predictable rate over time (Zuckerkandl and Pauling 1965).
The molecular clock can be calibrated to estimate divergence
times by using sampling time information, the timing of
known divergence events, or a previous estimate of the evo-
lutionary rate (Hipsley and Miller 2014). For example, Korber
et al. (2000) used sampling times to calibrate the molecular
clock and to infer the time of origin of HIV group 1. Their
approach consisted of estimating a phylogenetic tree and
conducting a regression of the distance from the root to

In this method, the slope of the regression is an estimate of
the evolutionary rate in substitutions per site per unit of time,
the intercept with the time axis is the age of the root node,
and the coefficient of determination (R?) is the degree to
which the data exhibit clocklike behavior (Rambaut et al.
2016). Despite the practicality of root-to-tip regression, its
use as a statistical tool for molecular dating has several
well-known limitations. In particular, data points are not in-
dependent because they have shared ancestry (i.e, internal
branches are traversed multiple times) and a strict clocklike
behavior is assumed by necessity.

The past few decades have seen a surge in novel molecular
clock models that explicitly use phylogenetic information.
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Bayesian methods have gained substantial popularity, largely
due to the wide array of complex models that can be imple-
mented and the fact that independent information, including
calibrations, can be specified via prior distributions
(Huelsenbeck et al. 2001; Nascimento et al. 2017). Of partic-
ular importance is the availability of molecular clock models
that relax the assumption of a strict clock by explicitly model-
ing rate variation among lineages (reviewed by Ho and
Duchene [2014] and by Bromham et al. [2018]).

Regardless of the methodology used to analyze time-
stamped sequence data, a sufficient amount of molecular
evolution must have occurred over the sampling time win-
dow to warrant the use of sequence sampling times for cal-
ibration. In such cases, the population can be considered to
be “measurably evolving” (Drummond et al. 2003). The de-
gree of “temporal information” in sequence data is deter-
mined by the sequence length, the evolutionary rate, the
range of available sampling times, and the number of sequen-
ces. Some viruses evolve at a rate of around 5 x 10> subs/
site/year (Duchene et al. 2014), such that samples collected
over a few weeks can be sufficient to calibrate the molecular
clock. In more slowly evolving organisms, such as mammals, a
sampling window of tens of thousands of years might be
necessary; this can be achieved by including ancient DNA
sequences (Drummond et al. 2003; Biek et al. 2015).

Testing for temporal signal is an important step prior to
interpreting evolutionary rate estimates (Rieux and Balloux
2016). A data set is considered to have temporal signal if it can
be treated as a measurably evolving population, defined by
Drummond et al. (2003) as “populations from which molec-
ular sequences can be taken at different points in time,
among which there are a statistically significant number of
genetic differences.” In general, the presence of temporal sig-
nal also implies that the data set will produce reliable diver-
gence time estimates (Murray et al. 2016). A popular method
to assess temporal signal is the date-randomization test that
compares actual evolutionary rate estimates to those
obtained by repeatedly permuting the sequence sampling
times (Ramsden et al. 2008). A data set is considered to
have strong temporal signal if the rate estimated using the
correct sampling times does not overlap with those of the
permutation replicates (Duchéne et al. 2015; Murray et al.
2016; Duchene et al. 2018). An implementation of this test is
also available that performs the permutation during a single
Bayesian analysis (Trovao et al. 2015). The interpretation of
the date-randomization test is essentially frequentist in na-
ture, which leads to an inconsistent mixture of statistical
frameworks when Bayesian phylogenetic methods are used.
Moreover, the procedure is not applicable in cases with small
numbers of sampling times, owing to the limited number of
possible permutations (Duchéne et al. 2015).

We propose a fully Bayesian model test, which we refer to
as BETS (Bayesian evaluation of temporal signal), to assess
temporal signal based on previous analyses by Baele et al.
(2012). The approach involves quantifying statistical support
for two competing models: a model in which the data are
accompanied by the actual sampling times (i.e, the data are
treated as heterochronous) and a model in which the

3364

sampling times are contemporaneous (i.e, the data are
treated as isochronous). Therefore, the sampling times are
treated as part of the model and the test can be understood
as a test of ultrametricity of the phylogenetic tree. If incorpo-
rating sampling times improves the statistical fit, then their
use for clock calibration is warranted. The crux of BETS, as
with Bayesian model selection, is that it requires calculating
the marginal likelihood of the model in question. The mar-
ginal likelihood measures the evidence for a model given the
data, and calculating it requires integration of its likelihood
across all parameter values, weighted by the prior (Kass and
Raftery 1995).

Because the marginal likelihood is a measure of model
evidence, the ratio of the marginal likelihoods of two com-
peting models, known as the Bayes factor, is used to assess
support for one model relative to the other. In the case of
applying BETS, let M, represent the heterochronous model,
Mg, the isochronous model, and Y the sequence data, such
that P(Y|Mpe) and P(Y|M,,) are their respective marginal
likelihoods. These models differ in the number of parameters.
In M;s,, the evolutionary rates and times are nonidentifiable,
so the rate is fixed to an arbitrary value; in My, the rate is a
free parameter. Differences in the number of parameters do
not need to be taken into account separately, because accu-
rate marginal-likelihood estimators naturally penalize exces-
sive parameterization. Kass and Raftery (1995) provide
guidelines for interpreting Bayes factors, where a (log) Bayes
factor log(P(Y|Mper))—log(P(Y|Mis,)) of at least 5 indicates
“very strong” support for M., over Mg, a value of 3 indicates
“strong” support, and a value of 1 is considered as positive
evidence for My, over M.

The importance of model selection in Bayesian phyloge-
netics has prompted the development of various techniques
to calculate log marginal likelihoods (reviewed by Baele and
Lemey [2014] and by Oaks et al. [2019]). These techniques
can be broadly classified into prior-based and/or posterior-
based estimators and path sampling approaches. Prior- and
posterior-based estimators, also known as importance sam-
pling, include the widely used harmonic mean estimator
(Newton and Raftery 1994) and the AICM and BICM
(Bayesian analogs to the Akaike information criterion and
the Bayesian information criterion, respectively) (Raftery
et al. 2007). These scores are easy to compute because they
only require samples from the posterior distribution as
obtained through Markov chain Monte Carlo (MCMC) inte-
gration. However, the harmonic mean estimator has been
shown to have unacceptably high variance when the prior
is diffuse relative to the posterior, and, together with the
AICM, has shown poor performance in practical settings
(Baele et al. 2012, 2013). The BICM requires a sample size
to be specified for each parameter, which is far from trivial
for phylogenetic inference and therefore remains unexplored
for such applications.

Path sampling approaches include path sampling (origi-
nally introduced in phylogenetics as “thermodynamic inte-
gration”) (Lartillot and Philippe 2006), stepping-stone
sampling (Xie et al. 2011), and generalized stepping-stone
(GSS) sampling (Fan et al. 2011; Baele et al. 2016). These
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methods depend on drawing samples using MCMC from a
range of power posterior distributions that represent the path
from the posterior to the (working) prior, and therefore re-
quire additional computation. Another numerical technique
that was recently introduced to phylogenetics is nested sam-
pling (NS) (Maturana et al. 2019), which approximates the log
marginal likelihood by simplifying the marginal-likelihood
function from a multidimensional to a 1D integral over the
cumulative distribution function of the log marginal likeli-
hood (Skilling 2006). Fourment et al. (2020) recently com-
pared the accuracy of a range of methods for estimating log
marginal likelihoods and found GSS to be the most accurate,
albeit at increased computational cost. Clearly, the reliability
of the log marginal-likelihood estimator is a key consideration
for applying BETS.

We conducted a simulation study to assess the reliability of
BETS under a range of conditions that are typical for data sets
of rapidly evolving organisms and of those that include an-
cient DNA. We also analyzed five empirical data sets to show-
case the performance of the test in practice. Our analyses
demonstrate the utility of BETS in providing accurate evalu-
ation of temporal signal across a wide range of situations.

Results

Simulations of Measurably Evolving Populations

In our simulations, we considered sequence data from het-
erochronous and isochronous trees. Heterochronous trees
represent a situation where there is sufficient temporal signal,
whereas isochronous trees lack temporal signal altogether.
We simulated heterochronous phylogenetic trees under a
stochastic birth—death process with between 90 and 110
tips (fig. 1A and B). To generate isochronous trees, we used
similar settings, but we assumed a single sampling time
(fig. 1C). We then simulated evolutionary rates along the trees
according to an uncorrelated relaxed clock with an underlying
lognormal distribution with a mean of 5 x 10> subs/site/
unit time and an SD, g, of 0.0, 0.1, 0.5, or 1, where ¢ = 0.0 is
equivalent to simulating under a strict clock. We then simu-
lated sequence evolution using an HKY + I" substitution
model, with parameter values similar to those estimated for
influenza virus (Hedge et al. 2013), to generate alignments of
4,000 nucleotides.

Our main simulation conditions produced data sets in
which ~50% of the sites were variable. We refer to this sim-
ulation scenario as (i) “high evolutionary rate and wide sam-
pling window,” and we considered three other simulation
scenarios that involved (ii) a lower evolutionary rate of
102 subs/site/unit time, (iii) a narrower sampling window,
and (iv) both of the previous two conditions. For a subset of
conditions, we investigated the effect of phylo-temporal clus-
tering, a situation in which sequences have been sampled at
only a few specific time points and form monophyletic groups
(fig. 1D). This pattern has been shown to be a confounding
factor that misleads date-randomization tests of temporal
signal and that often produces biased evolutionary rate esti-
mates (Duchene et al. 2015; Murray et al. 2016; Tong et al.
2018).

We analyzed the sequence data using a strict clock and an
uncorrelated relaxed clock with an underlying lognormal dis-
tribution (Drummond et al. 2006). We considered three con-
figurations for sampling times: birth—death sampling times,
which are correct for the heterochronous data but not for the
isochronous data; identical sampling times, which is correct
for isochronous data but not for the heterochronous data;
and permuted birth—death sampling times, which are incor-
rect for both heterochronous and isochronous data.

We estimated the log marginal likelihoods of these six
combinations of sampling times and clock models using NS
and GSS as implemented in BEAST 2.5 (Bouckaert et al. 2019)
and BEAST 1.10 (Suchard et al. 2018), respectively. Our BETS
approach ranked the models according to their log marginal
likelihoods and computed log Bayes factors of the best rela-
tive to the second-best model and of the best heterochro-
nous model (M) compared with the best isochronous
model (M)

Simulations with High Evolutionary Rate and Wide Sampling
Window

Both NS and GSS correctly classified data sets as being het-
erochronous or isochronous in ten out of ten simulations,
including in the presence of a high degree of among-lineage
rate variation (i.e, ¢ = 1.0; figs. 2 and 3 for heterochronous
data and supplementary figs. S1 and S2, Supplementary
Material online, for isochronous data). Although both log
marginal-likelihood estimators detected temporal signal, NS
supported the relaxed clock over the strict clock for three
heterochronous data sets simulated without among-lineage
rate variation (6 = 0.0) and for six data sets simulated with
low among-lineage rate variation (¢ = 0.1). In the simulations
of isochronous data, NS often favored the relaxed clock over
the strict clock when there was low among-lineage rate var-
iation (¢ =0.0 and ¢ =0.1), albeit mostly with log Bayes
factors <5 (supplementary fig. S2, Supplementary Material
online). In contrast, GSS always selected the strict clock under
these conditions (supplementary fig. S1, Supplementary
Material online).

For the heterochronous data sets, NS and GSS always dis-
played very strong support for M., over Mis,, with log Bayes
factors of at least 90. For the isochronous data sets, the log
Bayes factors for Mj,, relative to M, were overall much
lower, but still decisive, ranging from 30 to 50. Furthermore,
log Bayes factors tended to decline with an increasing degree
of among-lineage rate variation in the data. Another impor-
tant observation is that in the heterochronous data, the re-
laxed clock was consistently selected over the strict clock
when assuming that the data were isochronous, or when
the sampling times had been permuted (supplementary fig.
S3, Supplementary Material online). Moreover, the strict clock
with permuted sampling times yielded the lowest log mar-
ginal likelihoods for heterochronous data. Both of these pat-
terns are likely to be due to an apparently higher degree of
among-lineage rate variation when sampling times are
misspecified.
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Birth-death tree with a single sampling time point Coalescent tree with exponential growth
A=1.5, y=1.0, ¢=0, p=0.5 origin=5 and phylo-temporal clustering (5 clades with
identical sampling times)
A=1.5,6=1.0

Fic. 1. Four examples of phylogenetic trees used in simulations. Red dashed vertical lines indicate the times of the tips and therefore represent the
sampling process over time. Trees (A—C) were simulated under a birth—death process with time of origin of 5, such that the sum of the tree height
and the length of the stem branch leading to the root is always 5. Tree (D) was generated under a coalescent process with exponential growth. The
coalescent and birth—death models have an exponential growth rate, r, defined as the difference between the birth rate, 4, and the become-
uninfectious rate, J, such that r = A—39. We set A=1.5,and é = 1. In the birth—death model 6 = pt + \, where 1t is the death rate and V is the
sampling rate upon death. Thus, the population growth rate is constant and the same across all trees. Tree (A) represents a constant sampling
process and a wide sampling window (i = 0.5 time units throughout the whole process), whereas in Tree (B) sampling starts after 4.5 time units.
Before this time the sampling rate, Y, is zero. After 4.5 time units the sampling rate ¥/, is 0.9 (and thus p;= 0.1), resulting in a narrow sampling
window. Tree (C) has samples drawn at a single point in time with a sampling probability at present, p, of 0.5 (and thus i/ = 0). Tree (D) represents a
situation where tips with identical sampling times form monophyletic groups, a pattern known as phylo-temporal clustering. To generate these
conditions, we used a coalescent model conditioned on the number of tips and their sampling times. These sampling times corresponded to five
quantiles of a birth—death process with the same r.

Simulations with Low Evolutionary Rate and Wide Sampling
Window

Our simulations with a low evolutionary rate of 10~ subs/site/
unit time produced data sets that each had on an average ten
variable sites (with several replicates only having as few as four
variable sites), which provides very little information to esti-
mate evolutionary parameters and low power to differentiate
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between models. Marginal-likelihood estimator variance adds
to the difficulty in distinguishing between competing models
in such conditions. For the heterochronous data sets, GSS se-
lected the heterochronous model with correct dates in at least
seven out of ten simulation replicates (fig. 2). Across the sim-
ulations with different clock models (40 in total), only in five
heterochronous data sets did we find models with permuted
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Fic. 2. Models selected for heterochronous data using generalized stepping-stone sampling under two evolutionary rates, shown in each panel and
noted in the main text as conditions (i) and (ii), and four degrees of among-lineage rate variation as determined by the SD of a lognormal
distribution, ¢ (along the x-axis). Each set of bars corresponds to a model, with bar heights (along the y-axis) representing the number of times each
model was selected out of ten simulation replicates. The bars are colored and ordered according to the settings in the analysis, based on
combinations of two molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal distribution
(UCLN), and three settings for sampling times: generated under the birth—death process (BD), identical sampling times (Isochronous; 1SO), and

permuted (Permuted; PER).

sampling times to have the highest log marginal likelihoods.
For NS, in 12 out of 40 simulations, either isochronous models
or those with random sampling times were incorrectly selected
when heterochronous data sets were analyzed (fig. 3).

Log marginal likelihoods calculated using GSS tended to
support models with sampling times (either permuted or those
from the birth—death) for the isochronous data, whereas NS
appeared to provide equal support for all models (supplemen-
tary figs. 1 and S2, Supplementary Material online). However, a
critical feature of the results from the data sets with a low
evolutionary rate is that the log marginal likelihoods for all
models were more similar to one another than those for the
data sets with high evolutionary rate (supplementary fig. S4,
Supplementary Material online; note that the log marginal-
likelihood scale in supplementary fig. S4, Supplementary
Material online, is smaller than that in supplementary fig. S3,
Supplementary Material online). As a case in point, for the

isochronous data with ¢ =0.1 there were log Bayes factors
of ~0.1 for the best model with birth-death sampling times
relative to those with permuted sampling times. This result
points to difficulties distinguishing between models due to es-
timator variance in the case of few unique site patterns.
Additionally, this shows that comparing models with permuted
sampling times might be useful for determining whether the
data are informative about a particular set of sampling times.

Simulations with High Evolutionary Rate and Narrow
Sampling Window

We conducted a set of simulations similar to those described
in scenario (i) but where sequence sampling spanned only the
last 10% of the age of the tree (0.5 units of time, compared
with 5 units of time for the simulations with a wide sam-
pling window; fig. 1B). These conditions reflect those of
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Fic. 3. Models selected for heterochronous data using nested sampling under different simulation conditions; four combinations of evolutionary
rate and width of the sampling window shown in each panel and noted in the main text as conditions (i) through (iv), and four degrees of among-
lineage rate variation as determined by the SD of a lognormal distribution, & (along the x-axis). Each set of bars corresponds to a model and their
height (along the y-axis) represents the number of times each model was selected out of ten simulation replicates. The bars are colored and ordered
depending on the analyses settings with two molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an underlying
lognormal distribution (UCLN), and three settings for sampling times: generated under the birth—death process (BD), identical sampling times

(Isochronous; ISO), and permuted (Permuted; PER).

organisms with deep evolutionary histories and for which
samples are available for only a small (recent) portion of this
time. Since in these trees the samples were collected over a
narrower time window, we used a higher sampling proba-
bility to obtain ~100 samples, as in our other simulations.
For these analyses, we only considered heterochronous data
because the isochronous case is identical to the one in
scenario (i).

Both GSS and NS showed excellent performance in detect-
ing temporal signal in this scenario, with GSS always selecting
models with correct sampling times (figs. 2 and 3). The excep-
tions to this pattern occurred for one data set with ¢ =05
and for two data sets with =10 for NS (fig. 3).
Differentiating between the strict clock and relaxed clock
appeared somewhat more difficult, particularly for NS, where
the relaxed clock with correct sampling times yielded log
marginal likelihoods very similar to those for the strict clock
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for data with low among-lineage rate variation (¢ of 0.0 or
0.1). Although NS and GSS performed well in these simula-
tions, the log Bayes factors for My, relative to M, were much
lower than those for data with a high evolutionary rate and a
wide sampling window in (i). One obvious example is in the
data with ¢ = 0.0, where the mean log Bayes factors for M,
over M;, using GSS was 203.15 with a wide sampling window,
but decreased to 35.77 when sampling spanned a narrow
time window (supplementary fig. S5 Supplementary
Material online).

Simulations with Low Evolutionary Rate and Narrow
Sampling Window

We considered data sets with a narrow sampling window, as
in scenario (iii), and with a low evolutionary rate of 10> subs/
site/unit time, as in scenario (ii). We generated only
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Fic. 4. Evolutionary rate estimates for heterochronous data with correct sampling times using a strict clock (in dark blue in the online version, black
in print) and an uncorrelated relaxed clock with an underlying lognormal distribution (in light blue in the online version, grey in print). The panels
correspond to the simulation conditions (i) through (iv), described in the main text. The x-axis denotes four degrees of among-lineage rate
variation used to generate the data, as determined by the SD of a lognormal distribution, a. The y-axis corresponds to the evolutionary rate
estimate. Solid gray lines correspond to the mean evolutionary rate value used to generate the data. Dashed and dotted lines denote the 95-
percentile width of a lognormal distribution with ¢ = 0.1, and 0.5, respectively.

heterochronous trees under these conditions, because the
isochronous case would be identical to (ii).

Estimates of log marginal likelihoods with GSS and NS were
very similar among models, with mean log Bayes factors
among data sets of <1 for the two models with highest log
marginal likelihoods for GSS (supplementary fig. S6,
Supplementary Material online). In the data sets with
0=0.0, GSS and NS always preferred a heterochronous
model. However, in a few cases (three for GSS and one for
NS) the model with permuted sampling times was selected,
indicating that temporal signal was not detected (figs. 2 and
3). As with the data sets with low evolutionary rate and
constant sampling (ii), the relaxed clock was occasionally pre-
ferred over the strict clock, even when the data sets had no
rate variation among lineages.

Accuracy of Evolutionary Rate Estimates
We compared the accuracy and precision in rate estimates for
our heterochronous simulations with conditions (i) through

(iv) using the correct sampling times and the strict and uncor-
related relaxed lognormal clock models. In data sets simulated
under a high evolutionary rate and wide sampling window,
that is, condition (i), analyses of all simulation replicates with
¢ = 0.0 and ¢ = 0.1 had 95% highest posterior density (HPD)
intervals that included the true value of the clock rate used to
generate the data, 5 x 10~ subs/site/unit time (fig. 4). When
o = 0.5, the accuracy was lower, with four data sets analyzed
under the strict clock and three under the relaxed clock with
95% HPD intervals that included the true value. With ¢ = 1.0,
only one replicate using the strict clock included this true
value in its HPD interval. Importantly, however, under these
simulation conditions the HPD intervals of all estimates were
within the 95-percentile width of a lognormal distribution
with mean 5x 1072 and ¢ =0.1 or 05 (fig. 4), such that
they overlap the evolutionary rate distribution used to gen-
erate the data.

Most evolutionary rate estimates from the simulations
with low evolutionary rate, condition (ii), had 95% HPD
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intervals that included the true mean value used to generate
the data, 10> subs/site/unit time, at the expense of very wide
95% HPD intervals, compared with those in condition (i). Our
analyses of data sets with a high evolutionary rate and narrow
sampling window, condition (iii), had HPD intervals that were
wider than those for condition (i), but narrower than those of
condition (ii). All replicates with ¢ = 0.0 or 0.1 had estimates
that included the true mean value used to generate the data.
In contrast, three data sets with ¢ =0.5 analyzed under a
strict clock yielded HPD intervals that did not include the
true value. For data generated under o = 1.0, seven analyses
under the strict clock and three under the relaxed clock also
failed to recover the true value, although they always over-
lapped with the 95-percentile width of a lognormal distribu-
tion with mean 5 x 10 > and ¢ = 0.5. Analyses of the data
with low evolutionary rate and narrow sampling window
produced estimates that always included the true value of
10 subs/site/unit time in every case, but with very high
uncertainty (fig. 4).

Comparison with Root-to-Tip Regression

Using a subset of the heterochronous data sets, we conducted
root-to-tip regression using phylogenetic trees inferred using
maximum likelihood as implemented in PhyML 3.1 (Guindon
et al. 2010) with the same substitution model as in our BEAST
analyses, and with the placement of the root chosen to max-
imize R? in TempEst (Rambaut et al. 2016). We selected data
sets generated with a high evolutionary rate and with both
constant and narrow sampling windows. Because GSS and NS
correctly detected temporal signal under these conditions,
these regressions demonstrate the extent to which this infor-
mal regression assessment matches the BETS approach. We
did not attempt to provide a thorough benchmarking of the
two methods here.

Al regressions had R” values that matched our expectation
from the degree of among-lineage rate variation, that is,
higher values of ¢ corresponded to lower values of R’
(fig. 5). The data with a wide sampling window yielded re-
gression slopes ranging from 7.3 x 107> to 5.4 x 10> subs/
site/unit time, which is similar to the evolutionary rate values
used to generate the data. Although the root-to-tip regression
is sometimes used to assess temporal signal, it has no cut-off
values to make this decision. This becomes critical when con-
sidering the data with a narrow sampling window, for which
the R” was between 0.13 and 0.02. For example, the regression
for a data set with ¢ = 1 and narrow sampling window had
an R of 0.02, which is sometimes considered sufficiently low
as to preclude molecular clock analyses (Rieux and Balloux
2016). However, BETS supported temporal signal under a
relaxed clock, with a log Bayes factor of 5.48 for this particular
data set, which matches the simulation conditions. More
importantly, even with such high rate variation, the evolu-
tionary rate estimated using a relaxed clock and the correct
sampling times included the true value used to generate the
data (5 x 1072 subs/site/unit time), with a 95% HPD interval
of 215 10> to 1.90 x 10~ subs/site/unit time, whereas
the regression slope was 2.22 x 10”2 subs/site/unit time. A
key implication of these comparisons is that BETS provides a

3370

formal assessment of temporal signal, unlike statistics com-
puted from the regression. Moreover, the root-to-tip regres-
sion appears to be uninformative when the data have been
sampled over a narrow time window and there is some rate
variation among lineages.

Simulations with Phylo-Temporal Clustering
Phylo-temporal clustering sometimes occurs in empirical
data due to limited opportunities for sample collection or
varying degrees of population structure. We investigated the
effects of phylo-temporal clustering by performing an addi-
tional set of simulations in which we specified five clades of 20
tips. To generate heterochronous data within each clade, we
set five possible sampling times that corresponded to the
quantiles of sampling times from a birth—death process
with the same exponential growth rate as in our birth—death
simulations. We simulated trees conditioned on these clades
and their sampling times. To generate the sequence data, we
set 0 =0.0 and g =1.0. We estimated log marginal likeli-
hoods using only GSS, owing to its accuracy.

Using GSS, BETS correctly identified temporal signal and
the correct clock model in all simulations of heterochronous
data. However, evolutionary rates were often overestimated
for these data (fig. 6), a pattern that has been demonstrated
previously (Duchéne et al. 2015; Murray et al. 2016). When
the data were isochronous, BETS has lower performance,
identifying the correct model in eight cases when g =0.0
and seven cases when ¢=10 (supplementary fig. S7,
Supplementary Material online).

Sensitivity and Specificity

We investigated the extent to which detecting temporal sig-
nal could improve by using different cut-offs for the log Bayes
factors. From a practical point of view, the main concern is
that a data set with no temporal signal, for example when
simulated here under isochronous trees, would be classified as
heterochronous (i.e, false positives), resulting in spurious esti-
mates of evolutionary rates and times. This problem was ap-
parent in our simulations with a low evolutionary rate, where
a number of isochronous data sets were classified as hetero-
chronous. To determine such a possible cut-off value, we fit
receiver operating characteristic (ROC) curves and calculated
sensitivity and specificity (i.e., true-positive and true-negative
rates, respectively).

Our simulations with high evolutionary rates were cor-
rectly classified, with sensitivity and specificity of 1.0 (fig. 7).
Those with low evolutionary rates had a sensitivity and spe-
cificity of 0.68 and 0.85 with a wide sampling window and of
0.68 and 0.45 with a narrow sampling window. Importantly,
these values correspond to a log Bayes factor cut-off opti-
mized in the ROC curve fitting and are determined to be 1.04
for the simulations with a wide sampling window and 0.16 for
those with a narrow sampling window. A more conservative
approach to guard against false positives is to consider a
higher cut-off value. A log Bayes factor of 3 is generally con-
sidered to be “strong” evidence in favor of a model (Kass and
Raftery 1995). In our simulations with low evolutionary rate,
this cut-off results in a specificity of 0.95, meaning that 95% of
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Fic. 5. Root-to-tip regressions for a subset of data sets simulated with varying degrees of among-lineage rate variation (governed by the SD ¢ of a
lognormal distribution), using a high evolutionary rate and either a wide or narrow sampling window. The y-axis is the root-to-tip distance and the
x-axis is the time from the youngest tip, where 0 is the present. Each point corresponds to a tip in the tree and the solid line is the best-fit linear
regression using least-squares. The coefficient of determination, R? is shown in each case. For comparison, the log Bayes factors of the best
heterochronous model relative to the best isochronous model, BF(M},..—Mis,), are also shown.

isochronous data sets were classified as such, at the expense
of a low sensitivity of 0.43 for the data simulated with a wide
sampling window, and of 0.0 for those with a narrow sam-
pling window (note that sensitivity for the simulations with a
low evolutionary rate and narrow sampling window using
Bayes factor cut-off of 0.0 is already low, at 0.68).
Importantly, using a log Bayes factor cut-off of 3 would still
result in a specificity and sensitivity of 1.0 in our simulations
with a high evolutionary rate.

A key point about our data sets simulated with a low
evolutionary rate is that they contain (very) low numbers

of variable sites and unique site patterns (varying between
4 and 13), which can make model selection challenging. In
order to increase accuracy, one could invest significant com-
putational efforts to reduce estimator variance when re-
peated analyses prove inconclusive. The log Bayes factors
for these data are much lower than for those generated using
a higher evolutionary rate. We conducted another set of
simulations with the same low evolutionary rate, but with
much longer sequence alignments (10,000 nucleotides) to
increase the number of variable sites and unique site patterns.
For these longer alignments, the ROC curve indicated better
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Fic. 6. Results for heterochronous simulations with phylo-temporal clustering. The right-hand panel denotes models selected using generalized
stepping-stone sampling under two degrees of among-lineage rate variation as determined by the SD of a lognormal distribution, ¢ (along the x-
axis). Each set of bars corresponds to a model and their height (along the y-axis) represents the number of times each model was selected out of ten
simulation replicates. The bars are colored and ordered depending on the analyses settings with two molecular clock models, strict clock (SC) and
the uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and three settings for sampling times: generated under the
birth—death process (BD), identical sampling times (Isochronous; I1SO), and permuted (Permuted; PER). The left-hand panel shows evolutionary
rate estimates for with correct sampling times using a strict clock and an uncorrelated relaxed clock with an underlying lognormal distribution.

performance of BETS, with sensitivity and specificity both
equal to 0.83 with an optimal log Bayes factor of 1.39 (fig. 8).

Analyses of Empirical Data Sets

We analyzed five empirical data sets with similar configura-
tions of sampling times as in our simulation study (table 1).
Two data sets consisted of rapidly evolving pathogens:
A/HINT influenza virus (Hedge et al. 2013) and Bordetella
pertussis (Bart et al. 2014). We also analyzed a data set with
highly divergent sequences of coronaviruses (Wertheim et al.
2013), and two data sets with ancient DNA: Hepatitis B virus
(Patterson Ross et al. 2018) and mitochondrial genomes
of dog species (Thalmann et al. 2013). Due to the
demonstrated higher accuracy of GSS over NS (Fourment
et al. 2020), we applied the BETS approach using the former
method only.

The A/H1NT1 influenza virus data demonstrated clear tem-
poral signal, with the strict clock and relaxed clock with the
correct sampling times having the highest log marginal like-
lihoods, and a log Bayes factor of My, with respect to M, of
150 (fig. 9). The strict clock had higher support than the
relaxed clock for the correct sampling times (log Bayes factor
3.41). Broadly, this result is consistent with previous evidence
of strong temporal signal and clocklike behavior in this data
set (Hedge et al. 2013). Using the strict clock with correct
sampling times, we estimated an evolutionary rate of
337x 10> subs/site/year (95% HPD: 298 x 10> to
378 X 107°).

We detected temporal signal in the B. pertussis data set
(fig. 9). The relaxed clock with the correct sampling times
generated the highest log marginal likelihood, with a log
Bayes factor relative to the strict clock of 28.86. The log
Bayes factor for M. relative to M, was 47.40. These
results echo previous assessments of these data using a
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date-randomization test (Duchene et al. 2016). We esti-
mated a mean evolutionary rate using the best model of
165x 107 subs/site/year (95% HPD: 1.36x 10"’ to
2.00 x 1077).

Our analyses did not detect temporal signal in the coro-
navirus data, for which the strict clock and relaxed clock with
no sampling times had the highest log marginal likelihoods.
The log Bayes factor of My, relative to M, was —16.82,
indicating very strong support for the isochronous model.
The relaxed clock was supported over the strict clock, with
a log Bayes factor of 19.25 (fig. 10). The lack of temporal signal
precludes any interpretation of our estimates of evolutionary
rates and timescales. Previous analyses of these data sug-
gested an ancient origin for this group of viruses using a
substitution model that accounts for the effect of purifying
selection over time (Wertheim et al. 2013), a model that we
did not use here.

The Hepatitis B virus data set included several human
genotypes with complete genomes, where 135 were modern
sequences collected from 1963 to 2013 and two were ancient
samples from human mummies from the 16th century.
Previous studies have not found any temporal signal in these
data using different approaches, despite the inclusion of an-
cient sequences. Our estimates of log marginal likelihoods
were consistent with a lack of temporal signal, with a log
Bayes factor of —101.51 for My, relative to Mg,

The dog mitochondrial genome data contained samples
from up to 36,000 years before the present. BETS detected
temporal signal in these data, with a log Bayes factor of 38.77
for My, relative to Mi; this result is consistent with that of a
date-randomization test in a previous study (Tong et al.
2018). The estimated evolutionary rate for these data using
the best model had a mean of 1.08 x 10~ subs/site/year
(95% HPD: 7.49 x 10" % t0 152 x 10" 7).
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Fic. 7. Receiver operating characteristic (ROC) curves for data simulated with high evolutionary rate and wide sampling window (i), low
evolutionary rate and wide sampling window (i), high evolutionary rate and narrow sampling window (iii), and low evolutionary rate and narrow
sampling window (iv). Sensitivity and specificity values are shown in each case.

Discussion

We have proposed BETS, a method that explicitly assesses
the statistical support for including sequence sampling
times in a Bayesian framework. It is a test of the presence
of the temporal signal in a data set, which is an important
prerequisite for obtaining reliable inferences in phylody-
namic analyses. BETS considers the model ensemble, such
that the method can detect temporal signal using models
that account for evolutionary rate variation among line-
ages. The results of our analyses demonstrate that our
method is effective in a wide range of conditions, including
when the evolutionary rate is low or when the sampling
window represents a small portion of the timespan of the
tree.

BETS does not require date permutations, which sets it
apart from the widely used date-randomization test for

temporal structure. Date-randomization tests address the
question of whether a particular association between sequen-
ces and sampling times produces estimates different from
those obtained from data sets with permuted sampling times
(Duchéne et al. 2015; Murray et al. 2016). However, such an
approach is not a formal test of temporal signal in the data
because the permutations do not necessarily constitute an
appropriate null model. Because our method does not require
permutations, it has the benefit of being robust to using a
limited number of sampling times.

Accurate calculations of log marginal likelihoods are essen-
tial for BETS. In our simulation study, we found that GSS and
NS correctly assessed the presence and absence of temporal
signal in the data under most conditions. The correct clock
model was also identified, although in a few instances NS
preferred an overparameterized model. Conceivably, using
different log marginal-likelihood estimators might affect the
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actual model selected. Murray et al. (2016) also employed a
Bayesian model-testing approach using the AICM to assess
temporal signal. In their study, the AICM performed well in
simulations, but failed to detect temporal signal in empirical
data. We attribute this finding to the low accuracy of AICM
compared with path sampling methods (Baele et al. 2012,
2013), and suggest careful consideration of the log
marginal-likelihood estimator for tests of temporal signal. In
a recent review, Fourment et al. (2020) found GSS to be a
highly accurate albeit computationally demanding log
marginal-likelihood estimator.

A key benefit of BETS is that the complete model is con-
sidered. It is straightforward to use any model for which the
log marginal likelihood can be calculated, including other
models of among-lineage rate variation, unlike in simpler
data exploration methods such as root-to-tip regression. In
the particular case of local clock models (Drummond and
Suchard 2010; Worobey et al. 2014; Bletsa et al. 2019), the
root-to-tip regression is uninformative because it assumes
that the slope represents a single mean evolutionary rate.

We find that highly precise and accurate evolutionary rate
estimates are associated with strong Bayes factor support for
heterochronous models (fig. 4 and supplementary fig. S3,
Supplementary Material Online). Bayes factors provide a

Low evolutionary rate, wide sampling
window and long alignment length

True positive rate

Sensitivity = 0.83
0.0 4 Specificity = 0.83

T T T T

T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Fic. 8. Receiver operating characteristic (ROC) curves for data simu-
lated with low evolutionary rate, wide sampling window, and long
sequence length (10,000 nucleotides). Sensitivity and specificity val-
ues are shown.

Table 1. Details of Empirical Data Sets Used in This Study.

coherent approach to identifying the presence of temporal
signal, instead of providing a potentially subjective gradient of
strength of such signal. In contrast, root-to-tip regression
offers an important visual aid for uncovering problems with
data quality and to inspect clocklike behavior, but the ab-
sence of appropriate statistics means that there is no clear
objective way of determining whether the data contain tem-
poral information. Consider the regressions in figure 5 for data
with a high evolutionary rate and narrow sampling window.
Even when among-lineage rate variation is low (¢ = 0.1), the
data points form a cloud, with a low R” of 0.09. However, the
apparent “noise” around the regression line is probably the
result of stochasticity in sequence evolution and of the nar-
row sampling window relative to the age of the root of the
tree. In fact, for this particular data set, the model with the
highest log marginal likelihood is the strict clock with correct
sampling times.

In all of our analyses, we ensured that the priors for differ-
ent models and configurations of sampling times were iden-
tical because, as with all Bayesian analyses, model comparison
using log marginal likelihoods can depend on the choice of
prior (Oaks et al. 2019). For example, the tree prior can affect
inferences of temporal signal, as it is part of the full model
specification. Here, we used an exponential-growth coales-
cent tree prior, which closely matches the demographic dy-
namics of the birth—death process under which the data were
simulated. The effect of using an inappropriate tree prior on
tests of temporal signal requires further investigation, but
previous studies have suggested that there is only a small
impact on estimates of rates and times if the sequence
data are informative (Ritchie et al. 2017; Moller et al. 2018).

An interesting finding is that statistical support for isochro-
nous sampling times in truly isochronous data is lower than
that for the correct sampling times in truly heterochronous
data. This can potentially lead to an increased risk of incor-
rectly concluding the presence of temporal signal. In partic-
ular, in isochronous data simulated with a low evolutionary
rate, and with very few variable sites, the best models were
sometimes those that included sampling times, albeit with
very low log Bayes factors (e.g, supplementary figs. S1and S2,
Supplementary Material online). This probably occurs be-
cause stochastic error associated with a small amount of evo-
lution leads to low power for model selection. Although
increasing the computational settings for (log) marginal-
likelihood estimation can alleviate these issues, this may not
be feasible when analyzing large data sets. Further, our sensi-
tivity and specificity analyses demonstrate that a practical
way to address this problem is to use a more conservative
log Bayes factor cut-off of 3 as evidence of temporal structure,

Data Set Number of Sites (nucleotides) Number of Samples Sampling Time Range References
A/H1N1 influenza virus 13,154 329 10 months (March to December 2009) Hedge et al. (2013)
Bordetella pertussis 4.9 x 10° 150 89 years (1920-2009) Bart et al. (2014)
Coronaviruses 1,860 43 70 years (1941-2011) Wertheim et al. (2013)
Hepatitis B virus 3,271 137 445 years (2103-1568) Patterson Ross et al. (2018)
Dog mtDNA 14,596 50 36,000 years (to the present) Thalmann et al. (2013)
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Fic. 9. Log marginal likelihoods estimated using generalized stepping-
stone sampling for six analysis settings for sequence data from rapidly
evolving pathogens, A/HIN1 Human influenza virus and Bordetella
pertussis. The y-axis is the log marginal likelihood and the x-axis shows
the analysis settings, with two clock models, strict clock (SC) and the
uncorrelated relaxed clock with an underlying lognormal distribution
(UCLN), and three settings for sampling times: generated under the
birth—death process (BD), identical sampling times (Isochronous),
and permuted (Permuted). Solid points and dashed lines correspond
to the log marginal-likelihood estimates. The asterisk denotes the
model with the highest log marginal likelihood.

as opposed to simply choosing the model with the highest
marginal likelihood. This cut-off matches “strong” evidence in
favor of a model as suggested by Kass and Raftery (1995).
Permuting sampling times led to poor model fit, as
expected. This procedure has substantial computing require-
ments, depending on the number of permutations that are
performed, and we find that such date permutations are of
limited value for model testing when the data are highly in-
formative (e.g, figs. 2 and 3). However, in data sets with very
low information content, such as those that were produced
by simulations with a low evolutionary rate here, conducting
a small number of date permutations might offer a conser-
vative approach to determining whether model fit and pa-
rameter estimates are driven by a particular set of sampling
times, as one would expect in the presence of temporal signal.
The nature of the BETS approach means that every pa-
rameter in the model has a prior probability, including the
evolutionary rate. Because evolutionary rates and times are
nonidentifiable, it is conceivable that an informative prior on
the rate or on the age of an internal node might have a
stronger effect than the sampling times on the posterior,
for example, if the samples span a very short window of
time. Such analyses with informative evolutionary rate priors
effectively include several simultaneous sources of calibration
information (i.e, sampling times, internal nodes, and an
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FiG. 10. Log marginal likelihoods estimated using generalized step-
ping-stone sampling for six analysis settings for data sets with ancient
DNA or highly divergent sequences. The y-axis is the log marginal
likelihood and the x-axis shows the analysis settings, with two clock
models, strict clock (SC) and the uncorrelated relaxed clock with an
underlying lognormal distribution (UCLN), and three settings for
sampling times: generated under the birth—death process (BD), iden-
tical sampling times (Isochronous), and permuted (Permuted). Solid
points and dashed lines correspond to the log marginal-likelihood
estimates. The asterisk denotes the model with the highest log mar-
ginal likelihood.

informative rate prior). Using sampling times in addition to
other sources of calibration information might still be war-
ranted if such external sources of information are available.

Most of our heterochronous simulations yielded evolu-
tionary rate estimates that contained the true value used to
generate the data, indicative of the accuracy of our estima-
tions. However, it is important to note that all tests of tem-
poral signal, including BETS, aim to determine whether there
is an association between genetic divergence and time, which
is not equivalent to asking whether evolutionary rate esti-
mates are accurate, a question that depends on information
content of the data and the extent to which the model
describes the process that generated the data. Phylo-
temporal clustering is a particular situation where temporal
information in the data is very limited, leading to an upward
bias in the evolutionary rate (Murray et al. 2016), even in the
presence of temporal signal. As such, investigating the degree
of phylo-temporal clustering is an important step prior to
interpreting any inferences made using the molecular clock
(Duchéne et al. 2016; Tong et al. 2018).

Analyses with multiple calibrations can also allow uncer-
tainty in sequence sampling times, especially in data sets that
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include ancient DNA, where sampling times can be treated as
parameters in the model (Shapiro et al. 2011). BETS provides a
coherent approach for assessing temporal structure in these
circumstances, unlike date-randomization tests that typically
use point values for sampling times. In fact, BETS can be used
as a means to validate whether a sample is modern or ancient.

In general, the increasing adoption of Bayesian model test-
ing in phylogenetics has great potential for improving our
confidence in estimates of evolutionary rates and timescales.
The test that we have proposed here, BETS, provides a co-
herent and intuitive framework to test for temporal informa-
tion in the data.

Materials and Methods

Simulations

We simulated phylogenetic trees under a stochastic birth—
death process using MASTER v6.1 (Vaughan and Drummond
2013), by specifying birth rate A = 1.5, death rate ;1= 0.5, and
sampling rate iy = 0.5. This corresponds to an exponentially
growing infectious outbreak with reproductive number
Ro=1.5 and a wide sampling window. We set the simulation
time to 5 units of time, which corresponds to the time of
origin of the process. For isochronous trees, we used similar
settings, but instead of using the sampling rate, we sampled
each tip with probability p =0.5 when the process was
stopped after 5 units of time (ie, u=1.0 and ¥ = 0.0).
Some of our analyses consisted of artificially specifying sam-
pling times for isochronous trees, which we set to those that
we would have obtained from a birth-death process with
u=05and y =05.

In a second set of simulations of heterochronous trees, we
generated trees with a narrow sampling window. We speci-
fied two intervals for i and . The first interval spanned 4.5
units of time with = 1.0 and ¥ = 0.0, and the second in-
terval 0.5 units of time with ¢t = 0.1 and y = 0.9. As a result,
the process still had a constant become-uninfectious rate
(u+ ), but samples were only collected in the second in-
terval. The high sampling rate in the second interval resulted
in trees with similar numbers of tips to those with a wide
sampling window, but where their ages only spanned 0.5
units of time.

We only considered the simulated trees that contained
between 90 and 110 tips. The trees generated in MASTER
are chronograms (with branch lengths in units of time), so we
simulated evolutionary rates to generate phylograms (with
branch lengths in units of subs/site). To do this, we specified
the uncorrelated lognormal relaxed clock with a mean rate of
5x 10> or 10~ subs/site/unit time and an SD ¢ of 0.0
(corresponding to a strict clock), 0.1, 0.5, or 1.0. We simulated
sequence evolution along these phylograms under the HKY
nucleotide substitution model (Hasegawa et al. 1985). We
added among-site rate variation using a discretized gamma
distribution (Yang 1994, 1996) using Phangorn v2.5 (Schliep
2011) to generate sequence alignments of 4,000 and 10,000
nucleotides. We set the transition-to-transversion ratio of the
HKY model to 10 and the shape of the gamma distribution to
1, which is similar to estimates of these parameters in
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influenza viruses (Duchene et al. 2014; Hedge and Wilson
2014). For each simulation scenario, we generated ten se-
quence alignments.

To simulate data under phylo-temporal clustering, we
specified five clades with 20 tips each to generate trees of
100 tips. For the heterochronous data, we specified one of five
possible sampling times for each clade, which corresponded
to quantiles from a birth—death process as used in our sim-
ulations above. For the isochronous data, we constrained the
tips to have identical sampling times. We specified these
clades and sampling times in BEAST as monophyletic groups
and sampled trees from the prior under a coalescent process
with exponential growth parameterized with A=1.5 and
0 =1, such that it has the same growth rate as the birth—
death trees. We conducted these simulations under the co-
alescent, rather than the birth—death, because this process is
typically conditioned on the number and age of samples,
whereas the birth—death explicitly models sampling over
time. We simulated sequence data sets as above, but in this
case, we only considered an evolutionary rate of 5x 10>
subs/site/year and a ¢ of 0.0 or 1.0.

Estimation of Log Marginal Likelihoods Using NS

We analyzed the data in BEAST 2.5 using the matching sub-
stitution model, the exponential-growth coalescent tree prior,
the strict clock or relaxed clock, and different configurations
of sampling times. We chose the exponential-growth coales-
cent tree prior, instead of the birth—death tree prior, because
it is conditioned on the samples instead of assuming a sam-
pling process; this ensures that the marginal likelihoods for
isochronous and heterochronous trees are comparable.

We specified proper priors on all parameters, which is es-
sential for accurate estimation of log marginal likelihoods
(Baele et al. 2013). In our heterochronous analyses the prior
on the evolutionary rate had a uniform distribution bounded
between 0 and 1. We made this arbitrary choice to set a
somewhat uninformative prior and because the default prior
in BEAST 2.5 is a uniform distribution between 0 and infinity,
which is improper. Owing to the nonidentifiability of evolu-
tionary rates and times, neither can be inferred in the absence
of calibrating information, so in our isochronous analyses, we
fixed the value of the evolutionary rate to 1. The initial NS
chain length was chosen so as to draw 20,000 samples, with
20,000 steps, 32 particles, and a subchain length of 5,000 (note
that NS is not equivalent to standard MCMC, nor is the
definition of an iteration/step). The chain length and its ac-
companying sampling frequency were adjusted to obtain ef-
fective sample sizes for key parameters of at least 200
(computed in the NS output in BEAST 2.5). Examples of
MASTER files and BEAST 2.5 input files for NS are available
online (supplementary data, Supplementary Material online).

Estimation of Log Marginal Likelihoods Using GSS
Sampling

We used BEAST 1.10 with the same model specifications and
priors as in BEAST2, except for the prior on the evolutionary
rate, for which we used the approximate continuous-time
Markov chain reference prior (Ferreira and Suchard 2008).

020z Jaquieoa( 0§ U0 Jasn salieiqi] Buoy BuoH 1o Alisiaaiun AQ 026.298S/S9EE/L L/2€/2191Ie/a0W/Wwoo dno olwapese//:sdiy Woll papeojumo(]



Bayesian Evaluation of Temporal Signal - doi:10.1093/molbev/msaa163

MBE

Because our simulation analyses of GSS and NS differ in this
prior, the log marginal-likelihood estimates are not directly
comparable, so for each simulation, we report log Bayes fac-
tors of competing models instead of the individual log mar-
ginal likelihoods. The GSS implementation in BEAST 1.10 has
two different working priors for the tree generative process: a
matching tree prior and a product of exponentials. The latter
approach is the most generally applicable and is the one that
we used here (Baele et al. 2016).

We used an initiall MCMC chain length of 5 x 10’ steps
sampling every 5000 steps. After discarding 10% of the sam-
ples obtained, the remaining samples were used to construct
the working distributions for the GSS analysis through kernel
density estimation. The log marginal-likelihood estimation
comprised 100 path steps distributed according to quantiles
from a f distribution with o =0.3, with each of the 101
resulting power posterior inferences running for 5 x 10° iter-
ations. We assessed sufficient sampling for the initial MCMC
analysis by verifying that the effective sample sizes for key
parameters were at least 200 in Coda v0.19 (Plummer et al.
2006). If this condition was not met, we doubled the length of
the MCMC and reduced sampling frequency accordingly.
Examples of MASTER files and BEAST 1.10 input files for
GSS are available online  (supplementary  data,
Supplementary Material online).

Receiver Operating Characteristic Curves

Receiver operating characteristic curves are generated by
plotting the true-positive rate (TPR, i.e, the sensitivity) against
the false-positive rate (FPR, i.e, 1—specificity) at a range of
selected thresholds and allows assessment of the perfor-
mance of a binary classifier system. We fit ROC curves to
the different simulation scenarios using the R package
ROCR (Sing et al. 2005). We classified data as “positives”
and “negatives” if they were generated under a heterochro-
nous or isochronous (i.e, no temporal signal) model, respec-
tively. In order to determine the optimal cut-off value, we
determined the point on the ROC curve closest to a TPR of 1
and an FPR of 0 (i.e, we assigned equal importance to sensi-
tivity and specificity). We did not explore assigning different
costs to false positives and false negatives.

Analyses of Empirical Data Sets

We downloaded sequence alignments from their original
publications (table 1): complete genomes of the 2009 pan-
demic lineage of A/HTNT1 influenza virus (Hedge et al. 2013),
whole-genome sequences of B. pertussis (Bart et al. 2014;
Duchene et al. 2016), RdRP sequences of coronaviruses
(Wertheim et al. 2013), complete genomes of Hepatitis B virus
(Patterson Ross et al. 2018), and dog mitochondrial genomes
(Thalmann et al. 2013). The data and BEAST input files are
available in the Supplementary Material online.

Briefly, we used similar settings as in our simulations to
estimate log marginal likelihoods using GSS. For sequence
sampling times, we considered the correct sampling times,
no sampling times (i.e,, isochronous), and permuted sampling
times. We also specified tree priors as follows: an exponential-
growth coalescent for the A/H1N2 influenza virus, B. pertussis,

coronaviruses, and Hepatitis B virus data sets, and a constant-
size coalescent for the dog mitochondrial genomes as used by
Tong et al. (2018). We again chose the HKY + I" substitution
model, except in the analysis of Hepatitis B virus data, for
which we used the GTR+ I' model (Tavaré 1986), and in
the analysis of the dog data set for which we used the SRD06
substitution model (Shapiro et al. 2006) for coding regions
and the GTR + I" for noncoding regions.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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