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Populations of seasonal influenza virus experience strong annual
bottlenecks that pose a considerable extinction risk. It has been
suggested that an influenza source population located in tropical
Southeast or East Asia seeds annual temperate epidemics. Here
we investigate the seasonal dynamics and migration patterns
of influenza A H3N2 virus by analysis of virus samples obtained
from 2003 to 2006 from Australia, Europe, Japan, New York, New
Zealand, Southeast Asia, and newly sequenced viruses from Hong
Kong. In contrast to annual temperate epidemics, relatively low
levels of relative genetic diversity and no seasonal fluctuations
characterized virus populations in tropical Southeast Asia and
Hong Kong. Bayesian phylogeographic analysis using discrete
temporal and spatial characters reveal high rates of viral migration
between urban centers tested. Although the virus population that
migrated between Southeast Asia and Hong Kong persisted
through time, this was dependent on virus input from temperate
regions and these tropical regions did not maintain a source for
annual H3N2 influenza epidemics. We further show that multiple
lineages may seed annual influenza epidemics, and that each region
may function as a potential source population. We therefore pro-
pose that the global persistence of H3N2 influenza A virus is the
result of a migrating metapopulation in which multiple different
localities may seed seasonal epidemics in temperate regions in a
given year. Such complex global migration dynamics may con-
found control efforts and contribute to the emergence and spread
of antigenic variants and drug-resistant viruses.

evolution | molecular epidemiology | source-sink | phylogeography

Inﬂuenza A is a major respiratory infection of humans, with
annual epidemics occurring in Northern and Southern temper-
ate regions (1). On a global scale, viral migration between regions
with high seasonal disease incidence is important in determining
large-scale epidemiological patterns of influenza (2). Phylogenetic
analysis of H3N2 influenza A viruses on a local scale has shown
that seasonal increases in relative genetic diversity of the virus
population correspond to seasonal increases in viral incidence (3).
However, most lineages go extinct soon after their emergence, with
few persisting between seasonal epidemics (1-4). Accordingly,
local epidemics are annually seeded from other regions (5). In
addition, the relative genetic diversity of influenza virus in tem-
perate regions is clearly limited by the population bottlenecks that
occur at the end of seasonal epidemics (1-5).

Influenza infections of humans exhibit more variable seasonal
patterns in tropical and subtropical zones than in temperate
regions (6). Approximately 30% (2.1 billion) of the global pop-
ulation is concentrated in tropical East and Southeast Asia, of-
ten in large urban centers (7). Epidemiologically, these densely
populated and highly connected regions have year-round in-
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fluenza circulation but semiannual increases in influenza ac-
tivity associated with winter seasonal peaks in both Northern
and Southern hemispheres (8-10). This finding, coupled with
analyses of phylogenetic and antigenic diversity, led to the idea
that East and Southeast Asia may function as reservoirs that
maintain high diversity of influenza viruses that seed seasonal
influenza outbreaks in temperate regions; that is, influenza
viruses circulating in East and Southeast Asia may represent
a global source population, but temperate regions represent
ecological sinks (3, 11, 12).

The rapid global spread of severe acute respiratory syndrome
in 2003, which originated in Southern China, demonstrated
how an infectious disease could rapidly spread through a flight-
connected network (13, 14). However, equivalent studies to de-
scribe the evolutionary behavior and migration dynamics of in-
fluenza viruses in tropical regions are lacking and remain a major
gap in our understanding of the epidemiological dynamics of
influenza on a global scale.

In this study we selected seven geographic regions—Europe
(Northern Temperate), New York State in the United States
(Northern Temperate), Japan (Northeast Asia), Australia (Southern
Temperate), New Zealand (Southern Temperate), Hong Kong
(East Asia), and Southeast Asia (collectively Cambodia,
Indonesia, Malaysia, Myanmar, Philippines, Singapore, Thailand,
and Vietnam, representing a putative reservoir)—to determine
migration dynamics and formally assess the suitability of the
global source-sink ecological model for seasonal epidemics of
H3N2 influenza. Using both HA1 and full genome data, in-
cluding 105 newly acquired influenza genomes from Hong Kong,
we characterize the dynamics of influenza virus evolution during
the period 2003 to 2006 and examine how this relates to epi-
demic patterns in temperate regions, and particularly whether
tropical Asia consistently serves as a global source population for
influenza outbreaks.
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Results

Virus Surveillance and Dataset Design. We sequenced 105 full
genomes of human H3N2 viruses isolated during 2004 to 2005 in
Hong Kong (GenBank accession numbers provided in SI Ap-
pendix). To test the source-sink model of human influenza
ecology, we randomly selected 75 sequences from Europe (from
a total of 142 sequences available in GenBank), New York (211
sequences), Japan (193 sequences), Australia (170 sequences),
New Zealand (247 sequences), Hong Kong (182 sequences), and
Southeast Asia (130 sequences) for analysis. The latter consisted

I

2003 2004 2005 2006
Fig. 1. Temporally structured maximum clade credibility phylogenetic tree
showing the mixing of H3N2 influenza A virus global populations. This tree
is representative of Bayesian sampled trees used to determine geographic
structuring at tree tips for isolates sampled in Australia (AU, yellow), Europe
(EU, brown), Hong Kong (HK, red), Japan (JP, purple), New York (NY, blue),
New Zealand (NZ, green), and Southeast Asia (SEA, pink). Gray bars indicate
the northern temperate epidemic season. See S/ Appendix, Fig. S3 for virus
names.
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of virus sequence data from Cambodia, Indonesia, Malaysia,
Myanmar, Philippines, Singapore, Thailand, and Vietnam. See
SI Appendix, Figs. S1 and S2 for sampling frequency in each
geographic region and for each randomized data set tested.

Global Phylogeny and Geographic Signal. Phylogenetic analysis of
the HA1 domain showed viruses isolated from the same year and
region tended to cluster together, but with frequent mixing with
those from other regions (Fig. 1). To formally test if sequences
were more strongly clustered by geographical location than
expected by chance alone, and if this effect was supported sta-
tistically, given uncertainty in tree topologies, we used a phyloge-
netic trait-association test (15). This analysis revealed strong and
statistically significant geographic structuring for each location
(P < 0.001), suggesting localized annual epidemics (Table 1).

Region-Specific Evolutionary Behavior. It was evident from the
phylogenetic analyses that epidemics in Europe, New York,
Japan, Australia, and New Zealand (temperate regions) experi-
enced significant annual population bottlenecks (Fig. 24). Specit-
ically, the extensive seasonal outbreaks in these regions generated
numerous lineages but very few persist locally through time. For
example, most lineages went extinct at the end of the New York
2001-2002 seasonal epidemic, except for individual viruses that
were detected in New York 2002-2003 (Fig. 24). Furthermore, no
persistent lineages were detected from the New York 2002-2003,
2003-2004, and 2004-2005 epidemics, thereby highlighting the
strong seasonal bottlenecks in temperate regions. Moreover,
during these temperate epidemics we found that the majority of
lineages coalesced 6 to 8 mo before the outbreaks, consistent with
the continual introduction of diverse viruses (5) (Fig. 24).

In contrast, multiple lineages cocirculated in both Hong Kong
and Southeast Asia, often with a common ancestor that existed
1 to 2 y before virus sampling, thereby providing evidence of
some long-term persistence (Fig. 24). However, this observation
may be, to some extent, an artifact of less rigorous sampling in
Hong Kong and Southeast Asia relative to temperate regions,
and the long branches, indicative of persistence, could represent
unsampled diversity or introductions from other regions (16).

Seasonal Fluctuations in Relative Diversity of Different Geographic
Regions. Bayesian “skyride” reconstructions (17) demonstrated
strong seasonal periodicity in relative genetic diversity in tem-
perate zones, with major fluctuations through time (Fig. 2B). In
comparison, in Southeast Asia and Hong Kong we observe lower
levels of relative genetic diversity of influenza than in temperate
regions (Fig. 2B), although in the latter regions there is some
biannual fluctuation in diversity that corresponds with both
temperate epidemics. We assume that the strength of natural
selection, virus mutation rates, and generation times are broadly
similar among all human populations, regardless of geographic
location, such that any differences observed between regions
likely represent differences in viral population size. Hence, these
results suggest that influenza transmission in Hong Kong and
Southeast Asia was not as extensive as that observed in tem-
perate regions, which are characterized by local epidemics and
widespread transmission that generates and sustains greater
levels of relative genetic diversity throughout the epidemic.

There are two possible explanations for this pattern: either
virus populations are smaller in Hong Kong and Southeast Asia
or viruses are repeatedly introduced into Hong Kong and
Southeast Asia (where they are not sustained) from other geo-
graphic regions experiencing epidemics. Our phylogenetic anal-
ysis strongly supports common ancestry of viruses isolated in
Hong Kong and Southeast Asia with viruses from other regions.
This linkage supports a model of repeated introductions rather
than local circulation (Fig. 1). Regardless, the low levels of rel-
ative genetic diversity observed make it unlikely that populations
in Hong Kong or Southeast Asia are able to support a genetically
isolated, locally persistent source population for global influenza
epidemics during the period of sampling.

Bahl et al.
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Table 1. Statistical analysis of geographic structuring for sampled H3N2 virus isolates

Statistic Observed mean  Lower 95% CI  Upper 95% CI Null mean  Lower 95% CI  Upper 95% Cl P value
MC (AU) 5.26 4.0 7.0 2.20 1.90 2.93 0.002

MC (EV) 14.05 14.0 14.0 2.19 1.89 2.89 0.001

MC (HK) 7.21 7.0 8.0 2.18 1.87 2.95 0.001

MC (JP) 10.48 6.0 11.0 2.20 1.92 2.98 0.001

MC (NY) 13.65 13.0 17.0 2.18 1.89 2.78 0.001

MC (N2) 4.99 3.0 8.0 2.19 1.89 2.98 0.001

MC (SEA) 6.04 5.0 7.0 2.19 1.89 2.96 0.001

AU, Australia; EU, Europe; HK, Hong Kong; JP, Japan; NY, New York; NZ, New Zealand; and SEA, Southeast Asia.

Viral Migration and Persistence Through Discrete Geographic Regions.
We tested three different models of viral migration using phy-
logeographic trait reconstruction (18) to assess the potential
persistence of influenza A virus in Southeast Asia and Hong
Kong: (i) we assumed there was no seasonality in Southeast Asia
and Hong Kong (Fig. 34); (ii) we assumed biannual epidemics in
Southeast Asia and Hong Kong that correspond to temperate
seasonal epidemics (Fig. 3B); and (jii) we grouped regions into
epidemic zones (Northern, Southern and Tropical), treating
Hong Kong plus Southeast Asia as a single discrete char-
acter with seasonality corresponding to northern and southern
temperate epidemics (Fig. 3C). Although each analysis per-
formed well, the second model possibly suffered from over-
parameterization, suggesting that the additional parameters of
seasonality in Southeast Asia and Hong Kong are not appropriate,
consistent with epidemiological data (8). As a result, it was dif-
ficult to recover consistent state transitions between each ran-
domized dataset for the more complicated models, even when

2001 2002 2008 2004 2005 2006
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Bayesian sampling exceeded 100 million generations per run
(Fig. 3B). Our results showed frequent two-way migration be-
tween temperate and tropical Asian regions, as well as direct viral
movement between temperate regions. Critically, each model
supported populations of viruses migrating between regions with
no persistence in Southeast Asia or Hong Kong.

To formally test if one of these regions represents a global
source population, we estimated the rate of viral migration be-
tween the seven geographic regions, assuming the regions and
seasonal patterns as described in Fig. 34. This analysis revealed
that no single location seeded every annual epidemic in other
locations; rather, multiple geographic regions occupied sections
of the tree backbone (SI Appendix, Fig. S11). Evidence for viral
migration among these regions was observed and these phylo-
geographic linkages were mapped to visualize transmission dy-
namics (Fig. 4). The highest rates of viral migration with
statistical support [Bayes factor (BF) > 10] were observed con-
sistently within a season (Table 2). No evidence of viral
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Fig. 2. Temporally structured phylogenetic and coalescent analysis of (A) phylogenies generated from all available sequence data of annual epidemics from
viruses isolated in each location studied, and (B) Bayesian skyride analysis depicting fluctuating levels of relative genetic diversity from 2002 to 2006 of each
location. The x axis indicates time from youngest sampled sequence to the lower 95% confidence interval (Cl) of the tree-root height, and the y axis indicates
relative genetic diversity (Not) as estimated from the skyride coalescent analysis. Location of virus isolation is indicated by color (see legend to Fig. 1). See
SI Appendix, Figs. S4, S5, S6, S7, S8, S9, and S10 for virus names and S/ Appendix, Table S1 for sequence accession numbers.
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Fig. 3. Supported state transitions recovered from the combined inde-
pendent Bayesian analyses after removal of burnin (n = 15,000 sampling
events) for three randomized datasets (solid lines) indicating persistence of
a virus metapopulation migrating between geographic regions. Dashed lines
indicate state transitions that were supported in two of three randomized
datasets. (A) Assumes no seasonality in Southeast Asia or Hong Kong; (B)
assumes seasonality that corresponds to epidemics in temperate regions; and
(C) groups the metapopulation into three epidemic zones. Location of virus
isolation is indicated by color (see legend to Fig. 1).

persistence from one population through to another year in the
same location (e.g., Hong Kong 2003 to Hong Kong 2004) was
observed, suggesting that no single geographic region
supported a separate population through time. However, our
results do show strong support for viral migration to multiple
regions each year. For example, viruses from Europe (2003),
Japan and Southeast Asia (2004), and Hong Kong (2005) each
migrated to two or more other regions (Fig. 4 and Table 2).

In addition, our results reveal that outbreaks in temperate
regions could be seeded from multiple sources. Specifically, the
2005 Northern hemisphere epidemic was introduced to New
York from Australia and Southeast Asia (Fig. 4 and Table 2).
This epidemic in New York spread to Europe and then Japan.
Direct connections of the European and Japanese epidemic with
Southeast Asia or Hong Kong were not supported. The strongly

19362 | www.pnas.org/cgi/doi/10.1073/pnas.1109314108

Fig. 4. Supported state transitions indicating migration events and di-
rectionality between discrete localities from 2003 to 2005 epidemic seasons
visualized on a global map (Model 1, Fig. 3A). Geographic regions are in-
dicated by color (see legend to Fig. 1).

supported migration rates from Europe to New Zealand (2003)
and Australia (2005) to New York (2005), also show that the
Northern epidemics can be seeded directly from Southern
hemispheric regions and vice versa (Table 2).

Taken together, these results suggest that although viral
populations migrating between Southeast Asia and Hong Kong
may persist, maintenance of this population was dependent on
migration from temperate epidemics, and that no single geo-
graphical location acted as global source population during the
period of sampling, such that it is difficult to predict the global
source of any specific outbreak.

Discussion

Our study reveals that, during the period 2003-2006, there was
regular migration of populations of H3N2 influenza A virus
between regions with coinciding epidemic peaks and connecting
annual outbreaks in temporally offset epidemics in temperate
zones. Several alternative models have been proposed to explain
global dynamics of seasonal influenza, including a hypothetical
source population in tropical regions, likely East or Southeast
Asia, which seeds annual outbreaks in temperate regions (3, 11).
In contrast, we show that migration into East and Southeast Asia

Bahl et al.
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Table 2. Statistically supported migration rates between influenza populations

2003 2004 2005
From To Rate BF* From To Rate BF* From To Rate BF*
Nz AU 1.72 (0.67-2.95) >100 Nz AU 1.15 (0.34-2.03) >100 JP HK 1.89 (0.62-3.34) >100
SEA HK 1.14 (0.21-2.21) 46.72 SEA Nz 0.53 (0.10-1.05) 53.00 NY EU 1.17 (0.44-2.00) >100
EU JP 0.67 (0.05-1.59) 25.96 NY EU 0.71 (0.19-1.31) 24.08 HK SEA 1.41 (0.32-2.56) >100
JP NY 1.31 (0.02-3.15) 19.89 JP SEA 1.34 (0.33-2.39) 22.50 AU (2004) NY 1.18 (0.11-2.33) >100
EU NZ 0.57 (0.02-1.29) 16.48 EU JP 1.03 (0.27-1.98) 21.47 EU JP 1.28 (0.38-2.24) 46.17
HK (2003) JP 1.63 (0.44-3.09) 20.02 Nz AU 1.83 (0.53-3.24) 19.65
SEA HK 0.64 (0.20-1.17) 19.72 HK AU 1.08 (0.27-1.98) 19.35
JP HK 1.13 (0.35-2.08) 18.92 AU Nz 1.66 (0.42-3.21) 19.05
SEA (2004) NY 1.00 (0.27-1.87) 17.55

AU, Australia; EU, Europe; HK, Hong Kong; JP, Japan; NY, New York; NZ, New Zealand; and SEA, Southeast Asia.
*BF > 100 indicates decisive support, 30 < BF < 100 indicates very strong support, 10 < BF < 30 indicates strong support, and 6 < BF < 10 indicates substantial
support for migration between locations. Only statistically supported migrations with indicator values > 0.50 are shown.

occurred throughout the time period studied and that this mi-
gration contributed to the local persistence in these regions, and
that seasonal epidemics in temperate regions were seeded from
a variety of geographical sources, including directly from other
temperate outbreaks.

A suggested alternative model is that there are no restrictions
for viral migration between temperate or tropical regions (i.e., an
equal contacts model, in which China and Southeast Asia and
the United States serve as primary hubs for viral migration) (12).
However, this study did not account for strong annual population
bottlenecks or differing seasonality across large countries (e.g.,
China), thereby treating the sampling country as the main in-
dicator for estimating migration. Therefore, it is not possible
to distinguish the annual contributions to the global influenza
virus population of, for example, Hong Kong versus Shanghai
or Beijing, which have different climatic conditions and hence
might experience very different population dynamics. Although
both studies support complex migration dynamics rather than a
single source population restricted to one locality, the additional
complexity included in our phylogeographic model reveals a
continually migrating population.

Even though influenza virus circulates globally in humans, host
populations are unevenly distributed within a network of flight-
connected, highly dense urban centers (14). The discrete phy-
logeographic model used here shows that viruses from multiple
geographic origins may seed influenza epidemics. The success
of a given lineage through time is therefore most likely the result
of a combination of competitive exclusion and stochastic factors,
rather than its geographic origin alone. Although our study
suggests that viral migration between urban centers does occur,
the global persistence and re-emergence of annual epidemics in
different regions are only likely to occur when viral migration
into discrete regions occurs when the environment is suitable,
based on factors that are still not entirely understood (i.e., ab-
solute humidity, population density, and behavior) (19-21).

Although the absolute size of the global influenza population
is large, the effective population size in any one region may be
much smaller. Thus, by examining temperate regions where
seasonal influenza epidemics are synchronized, it is possible to
capture the full diversity of circulating lineages. However, trop-
ical and subtropical regions do not have synchronized seasons.
In source-sink ecological models the source population is ex-
pected to maintain high levels of genetic diversity through time
such that it can reseed the sink populations that frequently un-
dergo bottlenecks (22). It is possible that the lower levels of
genetic diversity observed in Southeast Asia and Hong Kong may
represent relatively stronger natural selection, perhaps resulting
from a long, slow season in tropical regions, compared with
short, fast seasons observed in temperate region. Although we
found no evidence for differences in viral behavior in the tropics,
the possible effect of geographic structuring with natural selec-
tion on phylogenetic structure clearly merits further study.

Bahl et al.

Here we show that no region included in our study maintains
a sufficiently diverse pool of viruses to act as a source population.
In contrast, the diversity of the global influenza population is
maintained by a series of temporally overlapping epidemics cou-
pled with high rates of migration. Although persistence is higher
in regions with less seasonality, epidemics in Southeast Asia and
Hong Kong are reseeded from elsewhere. Therefore, our results
show it is a globally circulating metapopulation that ensures the
long-term survival of influenza virus in humans.

A clear limitation of this analysis is that comprehensive data
from many major urban centers is lacking and that we have con-
sidered a relatively short time span. In particular, the viral mi-
gration to and from major urban centers in continental Europe,
Africa, South and Central Asia, and South America remains
unknown. Although influenza surveillance is robust in many of
these regions, insufficient gene sequencing coupled with associ-
ated metadata is available to understand the spatial and temporal
evolutionary dynamics in detail. The complex metapopulation
dynamics described here suggest that the connectedness of an
urban center to other regions may dictate the timing and spatial
dissemination of influenza epidemics. Current strategies for the
control of influenza by vaccination are based on the biannual
selection of vaccine candidates for the Northern and Southern
hemispheres and require an understanding of genetic and anti-
genic variants circulating and the potential for new variants to
emerge (23). Although such actions represent an effective vaccine
strategy in temperate regions, the complex global dynamics we
observe suggest that efforts to control influenza should include
region-specific strategies to advance the current global policy.

Materials and Methods

Virus Isolation and Sequencing. The Clinical Virology Unit at Queen Mary
Hospital, Hong Kong, is one of the three clinical virology laboratories in Hong
Kong and serves the hospitals on Hong Kong Island. The specimens studied
here were predominantly those from children hospitalized with acute re-
spiratory illness. The influenza virus isolates were all collected as part of
routine clinical work up. In this study we sequenced 105 full genomes of
human H3N2 viruses isolated from 2004 to 2005. These sequences were
analyzed with additional sequences from GenBank.

Phylogenetic and Coalescent Analysis. We analyzed 1,266 H3-HA sequences (S/
Appendix, Table S1 shows National Center for Biotechnology Information
accession numbers) with at least 900 nucleotides sampled from Europe, New
York State in the United States, Japan, Australia, New Zealand, and South-
east Asia (after removing identical sequences). These regions were selected
based on the availability of data from well-characterized epidemics (with
exact date of isolation) and human migratory networks, including East and
Southeast Asia. Therefore, this analysis was limited to a variety of geo-
graphical locations from the period 2003-2006, all of which are publicly
available via the Influenza Virus Resource at National Center for Bio-
technology Information (24). For computational tractability we analyzed
three randomly selected datasets with 75 virus HA1 sequences (987
nucleotides) from each region. Our final HA dataset comprised 525 taxa
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from seven localities, including Hong Kong, with temporally overlapping
influenza epidemics.

We used time-stamped sequence data with a relaxed-clock Bayesian
Markov-chain Monte Carlo method as implemented in BEAST v1.6.2 for
phylogenetic analysis (25, 26). For all analyses we used the uncorrelated
lognormal relaxed molecular clock to accommodate variation in molecular
evolutionary rate among lineages, the SRD06 codon position model, with
a different rate of nucleotide substitution for the first plus second versus the
third codon position, and the HKY85 substitution model then applied to
these codon divisions (27), except where noted below. This analysis was
conducted with a time-aware linear Bayesian skyride coalescent tree prior
over the unknown tree space, with relatively uninformative priors on all
model parameters except, a normal prior of 0.0031 substitutions per site per
year (SD 0.001) on the mean substitution rate and a normal prior on the
mean skyride size (log units) of 11.0 (SD 1.8). We performed at least three
independent analyses of 50-million generations. These analyses were com-
bined after the removal of an appropriate burn-in (10-20% of the samples
in most cases), with 5,000 generations sampled from each run for a total of
15,000 trees and parameter estimates.

Tests of Geographic Association at Tree Tips. To determine the extent to which
the distributed H3N2 influenza populations were geographically structured,
based on location the virus isolate was sampled, we performed a phyloge-
netic-trait association analysis using the posterior distribution of trees pro-
duced by BEAST (see above). These geographic regions were coded onto the
tips of 5,000 posterior sampled trees and these trees were analyzed using the
maximum monophyletic clade size (MC) statistic available within the BaTS
program and using 1,000 randomizations (15). This statistic determines the
association between sampling location and phylogeny by estimating the size
of the largest cluster of sequences sampled from each sampling location.
Significance for this test was determined with a critical P < 0.01 and 0.01 <
P < 0.05 marginally significant, and P > 0.05 not significant.

Bayesian Skyride Reconstruction of Past Population Dynamics. The annual
changing patterns of relative genetic diversity in viral isolates within each
locality were compared by Bayesian skyride analyses (17). All available data
from each geographical location studied here, was analyzed separately. The
Bayesian skyride model uses a piecewise demographic model with a Gaussian
Markov random field smoothing prior as described above (17).

Estimates of Viral Migration Through Discrete Geographic Regions. We used
a nonreversible continuous-time Markov-chain model to estimate the mi-
gration between geographic regions and the general patterns of global
circulation of influenza A virus (18). This analysis was restricted to the seven
previously identified geographic regions. A constant-population coalescent
process prior over the phylogeny and a simplified model of nucleotide
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substitution (HKY85) was used in this analysis. Previous reports suggest less
restrictive demographic priors have little effect on the phylogeographic in-
ference (18). In this test we assumed each geographic region and influenza
season was a discrete character; for example, an isolate collected from Oc-
tober 2002 to February 2003 in New York was assigned the discrete char-
acter, “New York 2003,” resulting in a total of 22 location/season states.
These discrete characters were subsequently mapped onto the internal
nodes of the phylogenetic trees sampled during the Bayesian analysis. Given
the large number of states, a Bayesian stochastic search variable selection
(BSSVS) was used to reduce the number of parameters to those with sig-
nificantly nonzero transition rates (18). The BSSVS explores and efficiently
reduces the state space by using a binary indicator (/) (18). The BSSVS also
calculates a BF, allowing the support for individual transitions between lo-
cation/season states to be assessed. The BF is a function of / and was deemed
statistically significant where / > 0.5 and the BF > 6. Supported state tran-
sition where the mean / was <0.5 were indicated with a dashed line. In this
analysis, statistical supports with BF > 100 indicate decisive support, whereas
6 <BF <10, 10 < BF <30, and 30 < BF < 100 indicate substantial, strong, and
very strong statistical support, respectively.

To further assess if virus populations in any region were persistent, we
assumed there was seasonality in Southeast Asia and Hong Kong to dis-
criminate between migration events corresponding to and from the northern
and southern epidemic seasons and to assess persistence of viral populations
in Southeast Asia and Hong Kong. This analysis assumed there were 29 lo-
cation/season states. We also grouped regions into epidemic zones (Northern,
Southern, and Tropical), again assuming seasonality in the tropical zone
(Southeast Asia + Hong Kong), corresponding northern temperate (Europe +
New York + Japan), and southern temperate (Australia + New Zealand)
annual epidemics (14 location/season states).

We found no evidence for reassortment—a potential confounder—in
these analyses (S/ Appendix, Figs. S12, S13, and S14).
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1.0 Detailed Supplementary Materials and Methods

1.1 Virus isolation and sequencing

The specimens studied here were collected as part of routine clinical work up and
predominantly those from children hospitalized with acute respiratory. They were collected at
the Clinical Virology Unit at Queen Mary Hospital, Hong Kong, one of the three clinical
virology laboratories in Hong Kong. We sequenced 105 full genomes of human H3N2
viruses isolated from 2004-2005 (GenBank Accession numbers CY038567-CY038758,
CY038935-CY039078, CY039159-CY039254, (CYO039487-CY039526, (CY040298-
CY040361, CY043744-CY043775, CY044397-CY044404 and CY100137-CY100400).
These sequences were analyzed with additional sequences from GenBank. Isolate names with
GenBank accession numbers are shown in the supplementary phylogenetic trees for each
additional sequence used here.

All influenza isolates were grown in MDCK cells and identified as influenza A by
immunofluorescence with specific monoclonal antisera and subtyped by the
hemagglutination assay (HA) using antisera supplied by the WHO Influenza virus
Identification kit (1). RNA extraction was performed as previously described using Qlagen
RNA extraction kits and the RNA was reverse transcribed and amplified by multisegment
RT-PCR DNA concentration was determined using a Nanodrop Spectrophotometer (2).
Sequencing reactions were performed using Big Dye Terminator chemistry (Applied
Biosystems, Foster City, CA). Additional RT-PCR and sequencing was performed to close
gaps and to increase coverage in low coverage or ambiguous regions. Sequencing reactions
were analyzed on a 3730xl ABI sequencer and sequences were assembled in a software

pipeline developed specifically for this project.



1.2 Phylogenetic and coalescent analysis

To examine whether tropical Asian countries (including Southeast Asia and Hong
Kong) were the source of seasonal epidemics in both the northern and southern temperate
regions, we conducted an expansive phylogenetic analysis of publically available HA1 gene
sequences. We analyzed 1275 H3-HA sequences (with at least 900 nucleotides), sampled
from Europe (142 sequences), New York state, USA (211 sequences), Japan (193 sequences),
Australia (170 sequences), New Zealand (247 sequences), Hong Kong (182 sequences) and
Southeast Asia (130 sequences) (SEA), the latter comprising Cambodia, Indonesia, Vietnam,
Malaysia, Myanmar, Philippines, Thailand, and Singapore (See Supplementary Table S1 for
accession numbers and Fig. S1 for distribution of virus isolation dates for each geographic
location examined). These regions were chosen based on the availability of data from well-
characterized epidemics and human migratory networks including East and Southeast Asia.
Therefore, this analysis was limited to a variety of geographical locations from the period
2003-2006, all of which are publicly available via the NCBI Influenza Virus Resource at
GenBank (3). For computational tractability we randomly selected (3x) 75 virus HAI
sequences (987 nucleotides) from seven discrete regions, including Hong Kong (See Fig. S2
for distribution of sampling dates for each randomized dataset). Our final HA data sets
comprised 525 taxa from seven localities with temporally overlapping influenza epidemic
seasons including East and Southeast Asia.

To generate temporal phylogenies using time-stamped sequence data we applied a
relaxed-clock Bayesian Markov chain Monte Carlo method as implemented in BEAST v1.6.2
(4,5). This method allows variable nucleotide substitution rates among lineages and also
incorporates phylogenetic uncertainty by sampling phylogenies and parameter estimates in
proportion to their posterior probability (4). The uncorrelated lognormal relaxed molecular

clock (ucld) was used for all analyses to accommodate variation in molecular evolutionary



rate amongst lineages. All analyses made use of the SRD06 codon position model, with a
different rate of nucleotide substitution for the 1*' plus 2™ versus the 3™ codon position, and
the HKY 85 substitution model then applied to these codon divisions (6). This analysis was
also conducted with a time-aware linear Bayesian skyride coalescent tree prior over the
unknown tree space and relatively uninformative priors on model parameters except, a
normal prior of 0.0031 substitutions/site/year (standard deviation 0.001) on the mean
substitution rate and a normal prior on the mean skyride size (log units) of 11.0 (standard
deviation 1.8). We performed at least three independent analyses of 50 million generations,
each sampled to produce 10,000 trees per data set to ensure adequate sample size of all
analysis parameters including the posterior, prior, nucleotide substitution rates, and
likelihoods (effective sample size > 200). These analyses were combined after the removal of
an appropriate burn-in (10%-20% of the samples in most cases) with 5000 generations
sampled from each run for a total of 15,000 trees and parameter estimates. The substitution
rates, times to most recent common ancestry (TMRCA), and maximum clade credibility
(MCC) phylogenetic trees then were calculated following visual inspection in TRACER
version 1.5 (7). The maximum clade credibility phylogenetic tree generated from this
analysis showing statistical supports for node age estimates and full taxa names is shown in

supporting figure S1.

1.3 Tests of geographic association at tree tips

To determine the extent to which the distributed H3N2 influenza population was
geographically structured we performed a phylogenetic trait association analysis using the
posterior distribution of trees produced by BEAST (see above). The geographic traits tested
were those sequences isolated from each locality (New York, Japan, Australia, New Zealand,

Hong Kong, and Southeast Asia). These geographic regions were coded onto the tips of the



final 5000 posterior sampled trees and these trees were analyzed using the maximum
monophyletic clade size (MC) statistic available within BaTS program and employing 1000
randomizations (8). This statistic determines the association between sampling location and
phylogeny by estimating the size of the largest cluster of sequences sampled from each
sampling location. Significance for this test was determined with a critical p< 0.01 and

0.01<p<0.05 marginally significant, and p>0.05 not significant.

1.4 Bayesian skyride reconstruction of past population dynamics

The annual changing patterns of relative genetic diversity in viral isolates within each
locality were compared by Bayesian skyride analyses (9). Each data set was analyzed
separately from each of the six geographical locations. The Bayesian skyride model uses a
piecewise demographic model with a Gaussian Markov random field (GMRF) smoothing
prior. In contrast to Bayesian skyline methods (10), which require fairly strong prior
information regarding the number of change points in a population history (i.e. number of
groups), the GMRF prior is relatively uninformative (9). In a population genetic context the
skyride coalescent analyses is an estimator of the product of the generation time (t) and the
effective size of the population (N¢). For influenza A virus, this product can be interpreted as
the effective number of infections averaged over time assuming a neutral evolutionary
process. Because both natural selection and seasonality are strong in influenza virus, we
interpret the skyride coalescent as relative genetic diversity (11). In our Bayesian coalescent
analysis of the HA1 we assume that the virus mutation rates and generation times across
populations of humans are similar, regardless of geographic location, such that any
differences observed between regions must represent differences in population size.

Therefore, it is appropriate to compare each geographic region by coalescent analysis.



Phylogenetic trees associated with the coalescent analysis showing statistical supports for

node age estimates and full taxa names are shown in figures S2-S7.

1.5 Estimates of viral migration rates and persistence through discrete geographic
regions

We used a non-reversible continuous-time Markov chain model to estimate the
migration rates between geographical regions and the general patterns on global circulation
of influenza A virus (12, 13). In this test we used a constant-population coalescent process
prior over the phylogeny and a simplified model of nucleotide substitution (HKY85) with the
UCLD relaxed molecular clock. Here we assumed each geographic region and influenza
season was a discrete character. By defining the discrete characters in such a manner we were
able to incorporate seasonality into the phylogeographic analysis. For example, an isolate
collected from Oct 2002 — Feb 2003 in New York was assigned the discrete character, ‘New
York 2003.” Since reconstructions of Hong Kong and Southeast Asian influenza populations
dynamics showed no evidence of seasonal bottlenecks, isolates sampled from these regions
were assigned the location and year of isolation as discrete characters. This results in a total
of 22 discrete states, which were subsequently mapped onto the internal nodes of
phylogenetic trees sampled during the Bayesian analysis. Given the large number of states, a
Bayesian stochastic search variable selection (BSSVS) was employed to reduce the number
of parameters to those with significantly non-zero transition rates (12). For the BSSVS we
assumed a Poisson prior, which assigns a 50% prior probability on the on the minimal rate
configuration. With this scenario we have 21 non-zero rates connecting the 22
location/seasons and a mean Poisson prior of 0.693 used in this analysis. The BSSVS
explores and efficiently reduces the state space by employing a binary indicator (I) (12, 13).

The BSSVS also calculates a Bayes factor (BF) allowing the support for individual



transitions between location/season states to be assessed. The BF is a function of I and was
deemed statistically significant where I> 0.5 and the BF>6 in at least 2 out of three
randomized datasets. Supported state transition where the mean I was <0.5 were indicated
with a dashed line. Our minimal critical cutoff for statistical supports were 6 < BF < 10,
indicating substantial support, 10 < BF < 30 indicating strong support, 30 < BF < 100
indicates very strong support and BF > 100 indicating decisive support (12 — 14).

These ancestral traits were then mapped onto the phylogenetic tree (Fig S8). This
analysis revealed that no single location seeded every annual epidemic in other locations.
Even though Southeast Asia and Hong Kong occupied substantial portions of the tree
backbone, multiple geographic regions occupied various sections of the tree indicating
extensive migration of the influenza population between these regions. Ancestral trait

changes are indicated on the phylogenetic tree (Fig. S8).

1.6 Statistical comparison of genomic phylogenies for reassortment

Reassortment events may potentially confound the results of our analyses. Although the
increased co-circulation of lineages provides for frequent reassortment events we found no
evidence for reassortment during the study period. In particular, essentially identical skyride
plots were observed for each segment from Hong Kong, New York and New Zealand,
respectively (Fig. S9-S11). The phylogenetic and coalescent analyses of the full genomes
from isolates sampled in New York and New Zealand were qualitatively identical, but this
was less clear with Hong Kong isolates (Figures S8-S10). To determine if reassortment had
occurred we searched the concatenated full genome sequence alignment of isolates from
Hong Kong, New York and New Zealand by single breakpoint analysis as implemented in
HyPhy (15). Conflicting phylogenetic signal from various breakpoints was tested by a

Kishino-Hasegawa (KH) test against the combined tree as the null hypothesis. One thousand

10



bootstrap replicates of each breakpoint KH test was conducted in order to determine whether
suspected breakpoints were statistically supported and assessed by the Akaike Information
Criteria (AIC). No highly supported break-points were identified among concatenated
genome segments, suggesting reassortment had not occurred in these regions during the

2003-2006 influenza epidemic seasons (p < 0.01).
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Table S1: Country and GenBank Accession numbers for additional sequences from public

databases used in this study

Australia Europe Hong Kong Japan New York New Zealand Southeast Asia
DQ865950 EU106663 EU501254 AB262301 CY000001 CY002905 DQ865970
DQ865953  EU106664 EUS501255 AB271503 CY000129 CY002906 EF566332
DQ865969  EU106665 EU501256 AB271504 CY000009 CY002914 EU501622
CY015772  EU106666 EU501257 AB271505 CY000017 CY002922 FJ865282
CY015780 EU106667 EUS501258 AB271506 CY000025 CY002930 FJ865283
CY015788  EU106668 EU501259 AB271511 CY000041 CY002938 FJ865284
CY015796 EU106670 EU501260 AB271514 CY000057 CY002946 DQ865961
CY015804 EU106671 EU501261 AB271515 CY000153 CY002954 DQ865962
CY015812 EU106672 EU501262 AB271516 CY000161 CY002962 EF566155
CY015820 EU106674 EU501264 AB271517 CY000169 CY002904 EF566164
CY015828 CY026043 EU501265 AB271524 CY000177 CY006923 EF566173
CY015836 CY026044 EUS501421 AB271525 CY000065 CY006931 EF566365
CY015844  CY026046 EU501422 AB271526 CY000081 CY006939 EF566051
CY015852 CY026047 EUS501668 AB270992 CY000089 CY006955 EUs501161
CY015860 CY026049 EU501670 AB270999 CY000097 CY006963 EU501281
CY015876 CY 026052 EU501671 EU501222 CY000105 CY006971 EU501283
CY015884 CY026054 EU501672 EUS501223 CY000121 CY006995 EUS501458
CY015900 CY026055 EU501674 EUS501268 CY000193 CY007003 EU501459
CY015908 CY026058 EUS501675 EU501269 CY000145 CY007011 EU501460
CY015916  CY026059 EU501676 EU501274 CY000249 CY007075 EU501461
CY015924 CY026061 EU501677 EU501294 CY000257 CY007083 EU501462
CY015932 CY026062 EUS502208 EU501300 CY000265 CY007131 EU501463
CY015956 CY026063 EU502209 EU501316 CY000345 CY007267 EU501464
CY015964 CY026064 EU856814 EU501340 CY000353 CY007275 EU501465
CY015980 CY026067 EU856822 EU501363 CY000361 CY007291 EU501466
CY015988 CY026072 EU856825 EU501364 CY000369 CY007307 EU501467
CY015996 CY026074 EU856837 EUS501365 CY000033 CY007331 CY091437
CY016004 CY026075 EU856841 EU501367 CY000377 CY007347 CY091445
CY016012 CY026076 EU856842 EU501387 CY000473 CY007371 CY091453
CY016028 CY026077 EU856843 EUS501388 CY000505 CY007379 FJ229884
CY016036 CY026078 EU856844 EU501389 CY000513 CY007387 DQ865957
CY016979 CY026081 EU856854 EU501401 CY000521 CY007403 DQ865958
CY017099 CY026082 EU856859 EU501404 CY000561 CY007435 EF566074
CY017107 CY026084 EU856860 EU501405 CY000753 CY007451 EUS501168
CY017563 CY026086 EU856861 EU501409 CY000761 CY007459 EUS501308
CY017579 CY026088 EU856862 EU501412 CY000777 CY007475 EU501312
CY017587 CY026090 EU856864 EUS501413 CY000785 CY007483 EUS514653
CY017595 CY026091 EU856870 EU501414 CY000873 CY007547 EU514667
CY017603  CY 026092 EU856906 EUS501415 CY000889 CY007555 DQ865951
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CYO017611
CYO017619
CYO017797
CYO017941
CYO017949
CYO017957
CYO017973
CYO017981
CYO017989
CY018925
CYO018973
CYO018981
CYO018989
CYO019005
CY019021
CY019029
CYO019747
EF467800
CY 020005
CY 020029
CY 020045
EF566130
EF566132
EF566143
EF566144
EF566148
EF566149
EF566150
EF566157
EF566161
EF566168
EF566170
EF566172
EF566177
EF566222
EF566230
EF566239
EF566241
EF566254
EF566295
EF566305
EF566306
EF566366
EF566367
EF566368
EF566019

CY 026093
CY 026094
CY 026095
CY 026096
CY 026098
CY 026100
CY 026101
CY 026102
CY 026103
CY 026105
CY 026108
CY 026109
CY026110
CY026114
CY026115
CY026116
CY026117
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Fig. S1. Distribution of virus sampling dates for each location tested.
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Fig. S3. Temporally structured maximum clade credibility phylogenetic tree showing the mixing of H3N2 influenza
A virus global populations.This tree is representative of the three randomized datasets.
Purple bars on nodes indicated 95% confidence intervals of date estimates.
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Figs. S4. Temporally structured maximum clade credibility phylogenetic tree showing the phylogenetic trees
with taxon names used for the coalescent analysis of New York. Europe. Purple bars on nodes indicated 95%

confidence intervals of date estimates.
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Figs. S6. Temporally structured maximum clade credibility phylogenetic tree showing the phylogenetic trees
with taxon names used for the coalescent analysis of Hong Kong. Purple bars on nodes indicated 95% confidence
intervals of date estimates.
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Figs. S7. Temporally structured maximum clade credibility phylogenetic tree showing the phylogenetic trees

with taxon names used for the coalescent analysis of South East Asia. Purple bars on nodes indicated 95%

confidence intervals of date estimates.
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Figs. S8. Temporally structured maximum clade credibility phylogenetic tree showing the phylogenetic trees
with taxon names used for the coalescent analysis of Australia. Purple bars on nodes indicated 95%
confidence intervals of date estimates.
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Figs. S9. Temporally structured maximum clade credibility phylogenetic tree showing the phylogenetic trees
with taxon names used for the coalescent analysis of New Zealand. Purple bars on nodes indicated 95%
confidence intervals of date estimates.
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Figs. S10. Temporally structured maximum clade credibility phylogenetic tree showing the phylogenetic
trees with taxon names used for the coalescent analysis of Europe. Purple bars on nodes indicated 95%
confidence intervals of date estimates.
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Fig S11. Phylogenetic tree generated from the discrete phylogeographic analysis showing ancestral state
changes at tree nodes recovered from the sampled trees for isolates sampled in each discrete location

and influenza season. Taxon names are indicated in Fig S1. The color key indicates the ancestral state location
mapped onto the trees.
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Figs. S12. Bayesian skyride analysis of influenza genomes depicting fluctuating levels of genetic diversity
from isolates sampled in New York. The x-axis indicates time from the youngest sampled sequence to the
lower 95% confidence interval of the tree root height, while the y-axis indicates relative genetic diversity

(Net) as estimated from the skyride coalescent analysis.
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Figs. S13. Bayesian skyride analysis of influenza genomes depicting fluctuating levels of genetic diversity

from isolates sampled in New Zealand. The x-axis indicates time from the youngest sampled sequence to the

lower 95% confidence interval of the tree root height, while the y-axis indicates relative genetic diversity
(Net) as estimated from the skyride coalescent analysis.
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Figs. S14. Bayesian skyride analysis of influenza genomes depicting fluctuating levels of genetic diversity from
isolates sampled in Hong Kong. The x-axis indicates time from the youngest sampled sequence to the lower 95%
confidence interval of the tree root height, while the y-axis indicates relative genetic diversity (Net) as estimated
from the skyride coalescent analysis.
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